login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343770
Numbers k such that 2*k+(A187129(k) mod A185297(k)) is prime.
0
11, 20, 22, 31, 32, 49, 64, 103, 110, 173, 293, 454, 496, 505, 589, 673, 701, 772, 784, 821, 884, 979, 1039, 1292, 1711, 1988, 2236, 2266, 2662, 2701, 4804, 6772, 8641, 8948, 13504, 23867, 40241
OFFSET
1,1
EXAMPLE
a(5) = 32 is a term because A187129(32) = 261,
A185297(32) = 59, and 2*32+(261 mod 59) = 89 is prime.
MAPLE
g:= proc(n) local i, L, x, y;
L:= select(t -> isprime(t) and isprime(2*n-t), [2, seq(i, i=3..n, 2)]);
x:= convert(L, `+`);
y:= nops(L)*2*n - x;
y mod x
end proc:
select(n -> isprime(2*n+g(n)), [$2..10000]); # Robert Israel, Apr 29 2021
PROG
(PARI) apq(n) = my(s=0, t=0); forprime(p=1, n, if (isprime(2*n-p), s += p; t+= 2*n-p)); t % s;
isok(k) = isprime(2*k + apq(k)); \\ Michel Marcus, Apr 29 2021
CROSSREFS
Sequence in context: A279431 A230541 A053715 * A250203 A339307 A038581
KEYWORD
nonn,more
AUTHOR
J. M. Bergot and Robert Israel, Apr 28 2021
STATUS
approved