Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Apr 30 2021 07:01:31
%S 11,20,22,31,32,49,64,103,110,173,293,454,496,505,589,673,701,772,784,
%T 821,884,979,1039,1292,1711,1988,2236,2266,2662,2701,4804,6772,8641,
%U 8948,13504,23867,40241
%N Numbers k such that 2*k+(A187129(k) mod A185297(k)) is prime.
%e a(5) = 32 is a term because A187129(32) = 261,
%e A185297(32) = 59, and 2*32+(261 mod 59) = 89 is prime.
%p g:= proc(n) local i,L,x,y;
%p L:= select(t -> isprime(t) and isprime(2*n-t), [2,seq(i,i=3..n,2)]);
%p x:= convert(L,`+`);
%p y:= nops(L)*2*n - x;
%p y mod x
%p end proc:
%p select(n -> isprime(2*n+g(n)), [$2..10000]); # _Robert Israel_, Apr 29 2021
%o (PARI) apq(n) = my(s=0, t=0); forprime(p=1, n, if (isprime(2*n-p), s += p; t+= 2*n-p)); t % s;
%o isok(k) = isprime(2*k + apq(k)); \\ _Michel Marcus_, Apr 29 2021
%Y Cf. A185297, A187129.
%K nonn,more
%O 1,1
%A _J. M. Bergot_ and _Robert Israel_, Apr 28 2021