login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that the digits of sigma(n) are a permutation of those of sigma*(n), where sigma*(n) is the sum of anti-divisors of n (A066417).
1

%I #11 Oct 24 2013 12:04:14

%S 11,20,22,26,33,65,82,117,209,218,376,417,483,508,537,561,675,758,910,

%T 1186,1208,1317,1350,1828,2039,2192,2347,2471,2840,2889,4129,4369,

%U 4389,4495,4893,5007,6430,7276,7690,8246,8777,9289,10651,11727,11797,12048,12099

%N Numbers n such that the digits of sigma(n) are a permutation of those of sigma*(n), where sigma*(n) is the sum of anti-divisors of n (A066417).

%H Paolo P. Lava, <a href="/A230541/b230541.txt">Table of n, a(n) for n = 1..100</a>

%e Divisors of 376 are 1, 2, 4, 8, 47, 94, 376, 188 and sigma(376) = 720; anti-divisors of 376 are 3, 16, 251 and sigma*(376) = 270.

%e Therefore 376 is part of the sequence because the digits of 720 are a permutation of the digits of 270.

%p with(numtheory); P:= proc(i) local a,b,c,j,k,n,ok,p;

%p for n from 3 to i do b:=[]; c:=[];

%p k:=0; j:=n; while j mod 2<>1 do k:=k+1; j:=j/2; od;

%p a:=sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2;

%p while a>0 do b:=[op(b),a mod 10]; a:=trunc(a/10); od; a:=sigma(n);

%p while a>0 do c:=[op(c),a mod 10]; a:=trunc(a/10); od;

%p if nops(b)=nops(c) then b:=sort(b); c:=sort(c); b:=b-c; ok:=1;

%p for j from 1 to nops(b) do if b[j]<>0 then ok:=0; break; fi; od;

%p if ok=1 then print(n); fi; fi; od; end; P(10^6);

%Y Cf. A000203, A066417, A115920.

%K nonn,base,less

%O 1,1

%A _Paolo P. Lava_, Oct 23 2013