login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230543
Numbers n that form a Pythagorean quadruple with n', n'' and sqrt(n^2 + n'^2 + n''^2), where n' and n'' are the first and the second arithmetic derivative of n.
5
512, 1203, 3456, 6336, 23328, 42768, 157464, 249753, 288684, 400000, 722718, 1062882, 1948617, 2700000, 4950000, 18225000, 33412500, 105413504, 123018750, 225534375, 312500000, 408918816
OFFSET
1,1
COMMENTS
Tested up to n = 4.09*10^8.
LINKS
Eric Weisstein's World of Mathematics, Pythagorean Quadruple
EXAMPLE
If n = 6336 then n' = 23808, n'' = 103936 and sqrt(n^2 + n'^2 + n''^2) = 106816.
MAPLE
with(numtheory): P:= proc(q) local a1, a2, n, p;
for n from 2 to q do a1:=n*add(op(2, p)/op(1, p), p=ifactors(n)[2]);
a2:=a1*add(op(2, p)/op(1, p), p=ifactors(a1)[2]);
if type(sqrt(n^2+a1^2+a2^2), integer) then print(n);
fi; od; end: P(10^10);
CROSSREFS
Cf. A096907-A096909 and A097263-A097266 for Pythagorean Quadruples.
Sequence in context: A220017 A234879 A202454 * A224651 A224644 A258726
KEYWORD
nonn,more
AUTHOR
Paolo P. Lava, Oct 25 2013
EXTENSIONS
a(16)-a(18) from Giovanni Resta, Oct 25 2013
a(19) from Ray Chandler, Dec 22 2016
a(20) from Ray Chandler, Dec 31 2016
a(21) from Ray Chandler, Jan 05 2017
a(22) from Ray Chandler, Jan 09 2017
STATUS
approved