login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230545
Solutions of the equation n' = n + phi(n), where n' is the arithmetic derivative of n.
1
8, 12, 100, 140, 243, 405, 1372, 46875, 56644, 64827, 98260, 101871, 107811, 129375, 230692, 243675, 300820, 644204, 851175, 1953125, 3828125, 7948395, 19307236, 28218268, 36517316, 69330772, 70174377, 93961125, 115008417, 173353125, 181010116, 267603885, 404021709
OFFSET
1,1
COMMENTS
Subsequence of A002808. - Altug Alkan, Oct 07 2015
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..108 (terms < 10^13)
EXAMPLE
For n = 1372 we have phi(n) = 588, n' = 1960 and 1960 = 1372 + 588.
MAPLE
with(numtheory); P:= proc(q) local a1, a2, n, p;
for n from 1 to q do a1:=n*add(op(2, p)/op(1, p), p=ifactors(n)[2]);
if a1=n+phi(n) then print(n); fi; od; end: P(10^6);
PROG
(PARI) for(n=2, 10^10, if((k = n + eulerphi(n)) && (d(n) = local(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))) && k==d(n), print1(n", "))) \\ Altug Alkan, Oct 06 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Oct 25 2013
EXTENSIONS
a(21)-a(33) from Giovanni Resta, Oct 25 2013
STATUS
approved