login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Solutions of the equation n' = n + phi(n), where n' is the arithmetic derivative of n.
1

%I #27 Mar 22 2019 12:09:28

%S 8,12,100,140,243,405,1372,46875,56644,64827,98260,101871,107811,

%T 129375,230692,243675,300820,644204,851175,1953125,3828125,7948395,

%U 19307236,28218268,36517316,69330772,70174377,93961125,115008417,173353125,181010116,267603885,404021709

%N Solutions of the equation n' = n + phi(n), where n' is the arithmetic derivative of n.

%C Subsequence of A002808. - _Altug Alkan_, Oct 07 2015

%H Giovanni Resta, <a href="/A230545/b230545.txt">Table of n, a(n) for n = 1..108</a> (terms < 10^13)

%e For n = 1372 we have phi(n) = 588, n' = 1960 and 1960 = 1372 + 588.

%p with(numtheory); P:= proc(q) local a1, a2, n, p;

%p for n from 1 to q do a1:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);

%p if a1=n+phi(n) then print(n); fi; od; end: P(10^6);

%o (PARI) for(n=2, 10^10, if((k = n + eulerphi(n)) && (d(n) = local(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))) && k==d(n), print1(n", "))) \\ _Altug Alkan_, Oct 06 2015

%Y Cf. A000010, A003415, A260624.

%K nonn

%O 1,1

%A _Paolo P. Lava_, Oct 25 2013

%E a(21)-a(33) from _Giovanni Resta_, Oct 25 2013