login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369532
G.f. A(x) satisfies: A( 3*A(x)^3 - 54*A(x)^4 ) = 3*x^3.
5
1, 6, 108, 2514, 66456, 1887624, 56279088, 1737120600, 55031743440, 1779094513494, 58457105824392, 1946499103128888, 65537993150694072, 2227498169071638960, 76321564765011374400, 2633410931198196730680, 91422656110479694644576, 3191108301755033616904896, 111923700012443943176623740
OFFSET
1,2
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A( 3*A(x)^3 - 54*A(x)^4 ) = 3*x^3.
(2) A( ( A(3*x^3 - 54*x^4)/3 )^(1/3) ) = x.
EXAMPLE
G.f.: A(x) = x + 6*x^2 + 108*x^3 + 2514*x^4 + 66456*x^5 + 1887624*x^6 + 56279088*x^7 + 1737120600*x^8 + 55031743440*x^9 + 1779094513494*x^10 + ...
RELATED SERIES.
3*A(x)^3 - 54*A(x)^4 = 3*x^3 - 54*x^6 - 972*x^9 - 28674*x^12 - 1084752*x^15 - 41255568*x^18 - 1741551840*x^21 - 76317761952*x^24 - ...
where A( 3*A(x)^3 - 54*A(x)^4 ) = 3*x^3.
Let B(x) satisfy A(B(x)) = B(A(x)) = x, where
B(x) = x - 6*x^2 - 36*x^3 - 354*x^4 - 4464*x^5 - 56592*x^6 - 796320*x^7 - 11632032*x^8 - 174223872*x^9 - 2674468710*x^10 - ...
then B(x)^3 = A(3*x^3 - 54*x^4)/3 which begins
B(x)^3 = x^3 - 18*x^4 + 18*x^6 - 648*x^7 + 5832*x^8 + 972*x^9 - 52488*x^10 + 944784*x^11 - 5600826*x^12 + ...
PROG
(PARI) {a(n) = my(V=[1]); for(i=1, n, V=concat(V, 0); A = x*Ser(V); V[#V] = -polcoeff(subst(G=A, x, 3*A^3 - 54*A^4 ), #V+2)/9); V[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 25 2024
STATUS
approved