login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229460
T(n,k) = number of defective 3-colorings of an n X k 0..2 array connected horizontally and vertically with exactly one mistake and colors introduced in row-major 0..2 order.
8
0, 1, 1, 2, 4, 2, 6, 20, 20, 6, 16, 84, 140, 84, 16, 40, 324, 863, 863, 324, 40, 96, 1188, 4962, 7940, 4962, 1188, 96, 224, 4212, 27313, 68790, 68790, 27313, 4212, 224, 512, 14580, 145932, 573342, 903332, 573342, 145932, 14580, 512, 1152, 49572, 763031
OFFSET
1,4
COMMENTS
Table starts
...0.....1......2........6.........16..........40............96.............224
...1.....4.....20.......84........324........1188..........4212...........14580
...2....20....140......863.......4962.......27313........145932..........763031
...6....84....863.....7940......68790......573342.......4651079........36985536
..16...324...4962....68790.....903332....11451686.....141595454......1718447506
..40..1188..27313...573342...11451686...221410052....4182294415.....77626332302
..96..4212.145932..4651079..141595454..4182294415..120864516084...3435347473308
.224.14580.763031.36985536.1718447506.77626332302.3435347473308.149656305350148
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1) - 4*a(n-2) for n > 4.
k=2: a(n) = 6*a(n-1) - 9*a(n-2) for n > 3.
k=3: a(n) = 10*a(n-1) - 29*a(n-2) + 20*a(n-3) - 4*a(n-4).
k=4: [order 6] for n > 7.
k=5: [order 10].
k=6: [order 14] for n > 15.
k=7: [order 26].
k=8: [order 38] for n > 39.
EXAMPLE
Some solutions for n=3, k=4:
0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2
2 1 2 1 2 1 2 0 2 2 1 0 1 0 2 1 1 0 2 0
0 2 1 2 1 2 1 2 0 1 2 1 2 0 1 0 1 2 0 2
CROSSREFS
Column 1 is A057711(n-1).
Column 2 is A167682(n-1).
Sequence in context: A174298 A196347 A021012 * A154120 A361727 A261964
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Sep 24 2013
STATUS
approved