login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) = number of defective 3-colorings of an n X k 0..2 array connected horizontally and vertically with exactly one mistake and colors introduced in row-major 0..2 order.
8

%I #8 Apr 27 2021 20:53:06

%S 0,1,1,2,4,2,6,20,20,6,16,84,140,84,16,40,324,863,863,324,40,96,1188,

%T 4962,7940,4962,1188,96,224,4212,27313,68790,68790,27313,4212,224,512,

%U 14580,145932,573342,903332,573342,145932,14580,512,1152,49572,763031

%N T(n,k) = number of defective 3-colorings of an n X k 0..2 array connected horizontally and vertically with exactly one mistake and colors introduced in row-major 0..2 order.

%C Table starts

%C ...0.....1......2........6.........16..........40............96.............224

%C ...1.....4.....20.......84........324........1188..........4212...........14580

%C ...2....20....140......863.......4962.......27313........145932..........763031

%C ...6....84....863.....7940......68790......573342.......4651079........36985536

%C ..16...324...4962....68790.....903332....11451686.....141595454......1718447506

%C ..40..1188..27313...573342...11451686...221410052....4182294415.....77626332302

%C ..96..4212.145932..4651079..141595454..4182294415..120864516084...3435347473308

%C .224.14580.763031.36985536.1718447506.77626332302.3435347473308.149656305350148

%H R. H. Hardin, <a href="/A229460/b229460.txt">Table of n, a(n) for n = 1..420</a>

%F Empirical for column k:

%F k=1: a(n) = 4*a(n-1) - 4*a(n-2) for n > 4.

%F k=2: a(n) = 6*a(n-1) - 9*a(n-2) for n > 3.

%F k=3: a(n) = 10*a(n-1) - 29*a(n-2) + 20*a(n-3) - 4*a(n-4).

%F k=4: [order 6] for n > 7.

%F k=5: [order 10].

%F k=6: [order 14] for n > 15.

%F k=7: [order 26].

%F k=8: [order 38] for n > 39.

%e Some solutions for n=3, k=4:

%e 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 1 0 2

%e 2 1 2 1 2 1 2 0 2 2 1 0 1 0 2 1 1 0 2 0

%e 0 2 1 2 1 2 1 2 0 1 2 1 2 0 1 0 1 2 0 2

%Y Column 1 is A057711(n-1).

%Y Column 2 is A167682(n-1).

%K nonn,tabl

%O 1,4

%A _R. H. Hardin_, Sep 24 2013