OFFSET
0,5
COMMENTS
Consider the transformation 1 + x + x^2 + x^3 + ... + x^n = A_0*(x+0)^0 + A_1*(x+2)^1 + A_2*(x+4)^2 + ... + A_n*(x+2n)^n. This sequence gives A_0, ... A_n as the entries in the n-th row of this triangle, starting at n = 0.
FORMULA
T(n,n-1) = 1 - 2*n^2 for n > 0.
EXAMPLE
1;
-1, 1;
-1, -7, 1;
-1, 29, -17, 1;
-1, -99, 175, -31, 1;
-1, 301, -1425, 569, -49, 1;
-1, -851, 10095, -8071, 1391, -71, 1;
-1, 2285, -65169, 97769, -29969, 2869, -97, 1;
-1, -5907, 393583, -1063447, 543471, -86731, 5279, -127, 1;
-1, 14829, -2260625, 10693865, -8746257, 2181269, -212449, 8945, -161, 1;
PROG
(PARI) for(n=0, 20, for(k=0, n, if(!k, if(n, print1(-1, ", ")); if(!n, print1(1, ", "))); if(k, print1(sum(i=1, n, ((-2*k)^(i-k)*i*binomial(i, k)))/k, ", "))))
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Derek Orr, Oct 15 2014
STATUS
approved