login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array A(h,k) = (2^h-1)*A(h,k-1) + Sum_{i=1..h-1} binomial(h,h-i)*2^i*A(i,k-1), with A(1,k) = A(h,1) = 1; read by antidiagonals.
8

%I #30 Jul 19 2024 11:32:47

%S 1,1,1,1,7,1,1,25,25,1,1,79,265,79,1,1,241,2161,2161,241,1,1,727,

%T 16081,41503,16081,727,1,1,2185,115465,693601,693601,115465,2185,1,1,

%U 6559,816985,10924399,24997921,10924399,816985,6559,1

%N Square array A(h,k) = (2^h-1)*A(h,k-1) + Sum_{i=1..h-1} binomial(h,h-i)*2^i*A(i,k-1), with A(1,k) = A(h,1) = 1; read by antidiagonals.

%C This symmetric table is defined in the Kreweras papers, used also in A223911. Its upper or lower triangular part equals A183109, which might provide a simpler formula.

%C Number of h X k binary matrices with no zero rows or columns. - _Andrew Howroyd_, Mar 29 2023

%C A(h,k) is the number of coverings of [h] by tuples (A_1,...,A_k) in P([h])^k with nonempty A_j, with P(.) denoting the power set. For the disjoint case see A019538. For tuples with "nonempty" omitted see A092477 and A329943 (amendment by _Manfred Boergens_, Jun 24 2024). - _Manfred Boergens_, May 26 2024

%H Andrew Howroyd, <a href="/A218695/b218695.txt">Table of n, a(n) for n = 1..1275</a> (first 50 antidiagonals)

%H G. Kreweras, <a href="http://www.numdam.org/item/?id=MSH_1969__26__5_0">Dénombrements systématiques de relations binaires externes</a>, Math. Sci. Humaines 26 (1969) 5-15.

%H G. Kreweras, <a href="http://dx.doi.org/10.1016/0012-365X(85)90137-2">Dénombrement des ordres étagés</a>, Discrete Math., 53 (1985), 147-149.

%F From _Andrew Howroyd_, Mar 29 2023: (Start)

%F A(h, k) = Sum_{i=0..h} (-1)^(h-i) * binomial(h, i) * (2^i-1)^k.

%F A052332(n) = Sum_{i=1..n-1} binomial(n,i)*A(i, n-i) for n > 0. (End)

%e Array A(h,k) begins:

%e =====================================================

%e h\k | 1 2 3 4 5 6 ...

%e ----+------------------------------------------------

%e 1 | 1 1 1 1 1 1 ...

%e 2 | 1 7 25 79 241 727 ...

%e 3 | 1 25 265 2161 16081 115465 ...

%e 4 | 1 79 2161 41503 693601 10924399 ...

%e 5 | 1 241 16081 693601 24997921 831719761 ...

%e 6 | 1 727 115465 10924399 831719761 57366997447 ...

%e ...

%o (PARI) c(h,k)={(h<2 || k<2) & return(1); sum(i=1,h-1,binomial(h,h-i)*2^i*c(i,k-1))+(2^h-1)*c(h,k-1)}

%o /* For better performance when h and k are large, insert the following memoization code before "sum(...)": cM=='cM & cM=matrix(h,k); my(s=matsize(cM));

%o s[1] >= h & s[2] >= k & cM[h,k] & return(cM[h,k]);

%o s[1]<h & cM=concat(cM~,matrix(s[2],h-s[1]))~;

%o s[2]<k & cM=concat(cM,matrix(max(h,s[1]),k-s[2])); cM[h,k]= */

%o (PARI) A(m, n) = sum(k=0, m, (-1)^(m-k) * binomial(m, k) * (2^k-1)^n ) \\ _Andrew Howroyd_, Mar 29 2023

%Y Columns 1..3 are A000012, A058481, A058482.

%Y Main diagonal is A048291.

%Y Cf. A019538, A056152 (unlabeled case), A052332, A092477, A183109, A223911, A329943.

%K nonn,tabl

%O 1,5

%A _M. F. Hasler_, Nov 04 2012