login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of compositions of n containing no part p of multiplicity p.
4

%I #13 Mar 17 2022 14:53:21

%S 1,0,2,2,5,11,18,36,84,155,305,625,1269,2487,5070,10263,20964,41905,

%T 84799,170540,346192,696157,1405156,2822998,5686402,11420892,22949684,

%U 46028648,92347798,185051670,370756866,742307736,1485798060,2972924906,5947567564

%N Number of compositions of n containing no part p of multiplicity p.

%H Alois P. Heinz, <a href="/A336269/b336269.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = A011782(n) - A336273(n).

%p b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,

%p add(`if`(i=j, 0, b(n-i*j, i-1, p+j)/j!), j=0..n/i)))

%p end:

%p a:= n-> b(n$2, 0):

%p seq(a(n), n=0..40);

%t b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i < 1, 0,

%t Sum[If[i == j, 0, b[n - i*j, i - 1, p + j]/j!], {j, 0, n/i}]]];

%t a[n_] := b[n, n, 0];

%t Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Mar 17 2022, after _Alois P. Heinz_ *)

%Y Cf. A011782, A242434, A276429, A336273.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Jul 15 2020