The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A273081 Decimal expansion of theta_3(0, exp(-3*Pi)), where theta_3 is the 3rd Jacobi theta function. 8
 1, 0, 0, 0, 1, 6, 1, 3, 9, 9, 0, 3, 5, 1, 4, 0, 6, 9, 4, 0, 2, 1, 5, 0, 2, 0, 7, 0, 3, 8, 9, 3, 9, 9, 5, 7, 3, 8, 8, 7, 5, 0, 8, 3, 9, 1, 2, 4, 2, 3, 7, 5, 2, 8, 9, 3, 7, 2, 7, 9, 9, 8, 6, 3, 1, 3, 9, 1, 4, 4, 3, 7, 0, 4, 5, 5, 1, 8, 7, 4, 5, 3, 4, 8, 5, 1, 2, 8, 5, 4, 2, 4, 9, 3, 0, 0, 7, 1, 2, 0, 4, 7, 3, 7, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 Wikipedia, Theta function FORMULA Equals (1 + 2/sqrt(3))^(1/4) * Pi^(1/4) / (3^(1/4) * Gamma(3/4)). EXAMPLE 1.0001613990351406940215020703893995738875083912423752893728... MAPLE evalf((1 + 2/sqrt(3))^(1/4) * Pi^(1/4) / (3^(1/4) * GAMMA(3/4)), 120); MATHEMATICA RealDigits[EllipticTheta[3, 0, Exp[-3*Pi]], 10, 105][[1]] RealDigits[(1 + 2/Sqrt[3])^(1/4) * Pi^(1/4) / (3^(1/4) * Gamma[3/4]), 10, 105][[1]] PROG (PARI) sqrtn((2/sqrt(3)+1)*Pi/3, 4)/gamma(3/4) \\ Charles R Greathouse IV, Jun 06 2016 (MAGMA) C := ComplexField(); (1+2/Sqrt(3))^(1/4)*Pi(C)^(1/4)/(3^(1/4) *Gamma(3/4)) // G. C. Greubel, Jan 07 2018 CROSSREFS Cf. A175573, A247217, A273082, A273083, A273084. Sequence in context: A195478 A259731 A176399 * A181552 A294347 A229606 Adjacent sequences:  A273078 A273079 A273080 * A273082 A273083 A273084 KEYWORD nonn,cons AUTHOR Vaclav Kotesovec, May 14 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 20:42 EDT 2021. Contains 347617 sequences. (Running on oeis4.)