login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195478 Decimal expansion of normalized Philo sum, Philo(ABC,G), where G=centroid of the 1,sqrt(3),2 right triangle ABC. 2
6, 1, 3, 8, 4, 1, 7, 2, 5, 3, 9, 4, 1, 8, 6, 8, 1, 0, 6, 6, 0, 3, 6, 7, 2, 4, 6, 0, 0, 1, 3, 9, 4, 0, 2, 6, 6, 0, 7, 4, 8, 2, 7, 9, 6, 4, 8, 4, 2, 3, 9, 2, 9, 9, 9, 3, 8, 3, 0, 9, 0, 1, 7, 7, 7, 0, 9, 5, 7, 8, 7, 7, 1, 4, 1, 7, 5, 6, 4, 4, 4, 3, 6, 8, 4, 1, 2, 8, 9, 0, 4, 7, 2, 2, 2, 1, 4, 2, 9, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A195304 for definitions and a general discussion.

LINKS

Table of n, a(n) for n=0..99.

EXAMPLE

Philo(ABC,G)=0.61384172539418681066036724600139402660748...

MATHEMATICA

a = 1; b = Sqrt[3]; h = 2 a/3; k = b/3;

f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2

s = NSolve[D[f[t], t] == 0, t, 150]

f1 = (f[t])^(1/2) /. Part[s, 4]

RealDigits[%, 10, 100] (* (A) A195575 *)

f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2

s = NSolve[D[f[t], t] == 0, t, 150]

f2 = (f[t])^(1/2) /. Part[s, 4]

RealDigits[%, 10, 100] (* (B) A195576 *)

f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2

s = NSolve[D[f[t], t] == 0, t, 150]

f3 = (f[t])^(1/2) /. Part[s, 4]

RealDigits[%, 10, 100] (* (C) A195577 *)

c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)

RealDigits[%, 10, 100] (* Philo(ABC, G) A195578 *)

CROSSREFS

Cf. A195304.

Sequence in context: A296504 A188859 A074584 * A259731 A176399 A273081

Adjacent sequences:  A195475 A195476 A195477 * A195479 A195480 A195481

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Sep 19 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 31 19:37 EDT 2020. Contains 333151 sequences. (Running on oeis4.)