login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A195476
Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(3),2).
2
1, 2, 7, 2, 2, 2, 4, 6, 5, 6, 0, 9, 0, 3, 5, 2, 3, 3, 6, 6, 0, 8, 1, 4, 1, 9, 8, 1, 3, 6, 9, 2, 1, 8, 6, 0, 9, 5, 4, 9, 2, 0, 7, 5, 8, 8, 9, 4, 2, 5, 6, 3, 3, 0, 6, 9, 5, 6, 9, 4, 3, 5, 5, 8, 7, 1, 3, 6, 7, 4, 5, 3, 7, 4, 5, 2, 9, 4, 1, 8, 2, 3, 6, 0, 9, 7, 8, 6, 3, 3, 3, 5, 0, 1, 1, 8, 1, 8, 3, 5
OFFSET
1,2
COMMENTS
See A195304 for definitions and a general discussion.
EXAMPLE
(B)=1.272224656090352336608141981369218609549207...
MATHEMATICA
a = 1; b = Sqrt[3]; h = 2 a/3; k = b/3;
f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f1 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (A) A195575 *)
f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f2 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (B) A195576 *)
f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f3 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (C) A195577 *)
c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
RealDigits[%, 10, 100] (* Philo(ABC, G) A195578 *)
CROSSREFS
Cf. A195304.
Sequence in context: A204382 A072981 A023399 * A082072 A082066 A179931
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Sep 19 2011
STATUS
approved