login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195477
Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(3),2).
2
9, 8, 8, 6, 5, 9, 2, 6, 2, 9, 8, 1, 9, 3, 8, 8, 4, 1, 7, 1, 3, 0, 9, 5, 8, 6, 3, 8, 8, 3, 8, 2, 5, 2, 4, 0, 3, 0, 6, 3, 3, 4, 0, 6, 3, 5, 4, 4, 3, 7, 8, 5, 1, 8, 2, 0, 8, 1, 0, 0, 4, 8, 2, 6, 1, 1, 8, 6, 8, 8, 8, 2, 0, 4, 0, 6, 8, 1, 2, 5, 5, 6, 8, 6, 4, 5, 6, 7, 3, 2, 1, 8, 6, 2, 9, 0, 6, 8, 2, 4
OFFSET
0,1
COMMENTS
See A195304 for definitions and a general discussion.
EXAMPLE
(C)=0.98865926298193884171309586388382524030...
MATHEMATICA
a = 1; b = Sqrt[3]; h = 2 a/3; k = b/3;
f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f1 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (A) A195575 *)
f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f2 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (B) A195576 *)
f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f3 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (C) A195577 *)
c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
RealDigits[%, 10, 100] (* Philo(ABC, G) A195578 *)
CROSSREFS
Cf. A195304.
Sequence in context: A065468 A258752 A363704 * A157680 A305382 A347199
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Sep 19 2011
STATUS
approved