login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A074584 Esanacci (hexanacci or "6-anacci") numbers. 18
6, 1, 3, 7, 15, 31, 63, 120, 239, 475, 943, 1871, 3711, 7359, 14598, 28957, 57439, 113935, 225999, 448287, 889215, 1763832, 3498707, 6939975, 13766015, 27306031, 54163775, 107438335, 213112838, 422726969, 838513963, 1663261911 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

These esanacci numbers follow the same pattern as Lucas, generalized tribonacci (A001644), generalized tetranacci (A073817), and generalized pentanacci (A074048) numbers.

The closed form is a(n) = r1^n + r^2^n + r3^n + r4^n + r5^n + r6^n, with r1, r2, r3, r4, r5, r6 roots of the characteristic polynomial.

a(n) is also the trace of A^n, where A is the matrix ((1, 1, 0, 0, 0, 0), (1, 0, 1, 0, 0, 0), (1, 0, 0, 1, 0, 0), (1, 0, 0, 0, 1, 0), (1, 0, 0, 0, 0, 1), (1, 0, 0, 0, 0, 0).

LINKS

T. D. Noe, Table of n, a(n) for n=0..200

Martin Burtscher, Igor Szczyrba, RafaƂ Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.

Mario Catalani, Polymatrix and Generalized Polynacci Numbers, arXiv:math/0210201 [math.CO], 2002.

Tony D. Noe and Jonathan Vos Post, Primes in Fibonacci n-step and Lucas n-step Sequences, J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4

E. Weisstein, Fibonacci n-Step

Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,1,1).

FORMULA

a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5) + a(n-6), a(0)=6, a(1)=1, a(2)=3, a(3)=7, a(4)=15, a(5)=31.

G.f.: (6-5*x-4*x^2-3*x^3-2*x^4-x^5)/(1-x-x^2-x^3-x^4-x^5-x^6).

a(n) = 2*a(n-1) - a(n-7) for n >= 7. - Vincenzo Librandi, Dec 20 2010

MATHEMATICA

CoefficientList[Series[(6-5*x-4*x^2-3*x^3-2*x^4-x^5)/(1-x-x^2-x^3-x^4-x^5-x^6), {x, 0, 40}], x]

LinearRecurrence[{1, 1, 1, 1, 1, 1}, {6, 1, 3, 7, 15, 31}, 40] (* Harvey P. Dale, Nov 08 2011 *)

PROG

(PARI) polsym(polrecip(1-x-x^2-x^3-x^4-x^5-x^6), 40) \\ G. C. Greubel, Apr 22 2019

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (6-5*x-4*x^2-3*x^3-2*x^4-x^5)/(1-x-x^2-x^3-x^4-x^5-x^6) )); // G. C. Greubel, Apr 22 2019

(Sage) ((6-5*x-4*x^2-3*x^3-2*x^4-x^5)/(1-x-x^2-x^3-x^4-x^5-x^6)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 22 2019

CROSSREFS

Cf. A000078, A001630, A001644, A000032, A073817, A074048.

Sequence in context: A296476 A296504 A188859 * A195478 A259731 A176399

Adjacent sequences:  A074581 A074582 A074583 * A074585 A074586 A074587

KEYWORD

easy,nonn

AUTHOR

Mario Catalani (mario.catalani(AT)unito.it), Aug 26 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 17 00:49 EST 2020. Contains 331976 sequences. (Running on oeis4.)