login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A074586
Triangle of Moebius polynomial coefficients, read by rows, the n-th row forming the polynomial M(n,x) such that M(n,-1) = mu(n), the Moebius function of n.
9
1, 1, 2, 1, 4, 2, 1, 7, 8, 2, 1, 9, 15, 10, 2, 1, 13, 30, 27, 12, 2, 1, 15, 43, 57, 39, 14, 2, 1, 19, 67, 108, 98, 53, 16, 2, 1, 22, 90, 177, 206, 151, 69, 18, 2, 1, 26, 123, 282, 393, 359, 220, 87, 20, 2, 1, 28, 149, 405, 675, 752, 579, 307, 107, 22, 2, 1, 34, 203, 594, 1109
OFFSET
1,3
FORMULA
The n-th row consists of the coefficients of M(n, x) as a polynomial in x, where M(n, x) = 1 + [n/1]*x*M(1, x) + [n/2]*x*M(2, x) + [n/3]*x*M(3, x) +... + [n/(n-1)]*x*M(n-1, x) for n>1, with M(1, x) = 1, where [x] = floor(x).
T(n, k) = Sum_{m=1..n-1} [n/m]*T(m, k-1) for n>=k>1, with T(n, 1)=1 for n>=1.
EXAMPLE
The first few Moebius polynomials are as follows:
M(1,x) = 1;
M(2,x) = 1 + 2*x;
M(3,x) = 1 + 4*x + 2*x^2;
M(4,x) = 1 + 7*x + 8*x^2 + 2*x^3;
M(5,x) = 1 + 9*x + 15*x^2 + 10*x^3 + 2*x^4;
M(6,x) = 1 + 13*x + 30*x^2 + 27*x^3 + 12*x^4 + 2*x^5;
M(7,x) = 1 + 15*x + 43*x^2 + 57*x^3 + 39*x^4 + 14*x^5 + 2*x^6; ...
ILLUSTRATION OF GENERATING METHOD:
M(1,x) = 1;
M(2,x) = 1 + 2*x*M(1,x) = 1 + 2*x;
M(3,x) = 1 + 3*x*M(1,x) + [3/2]*x*M(2,x) = 1 + 3*x + x*(1+2*x) = 1 + 4*x + 2*x^2;
M(4,x) = 1 + 4*x*M(1,x) + [4/2]*x*M(2,x) + [4/3]*x*M(3,x) = 1 + 4*x + 2*x*(1 + 2*x) + 1*x*(1 + 4*x + 2*x^2) = 1 + 7*x + 8*x^2 + 2*x^3;
M(5,x) = 1 + 5*x*M(1,x) + [5/2]*x*M(2,x) + [5/3]*x*M(3,x) + [5/4]*x*M(4,x) = 1 + 5*x + 2*x*(1 + 2*x) + 1*x*(1 + 4*x + 2*x^2) + 1*x*(1 + 7*x + 8*x^2 + 2*x^3) = 1 + 9*x + 15*x^2 + 10*x^3 + 2*x^4; ...
This triangle of coefficients begins:
1
1 2
1 4 2
1 7 8 2
1 9 15 10 2
1 13 30 27 12 2
1 15 43 57 39 14 2
1 19 67 108 98 53 16 2
1 22 90 177 206 151 69 18 2
1 26 123 282 393 359 220 87 20 2
1 28 149 405 675 752 579 307 107 22 2
1 34 203 594 1109 1439 1333 886 414 129 24 2 ...
MATHEMATICA
t[n_, 1] = 1; t[n_, k_] := t[n, k] = Sum[ Floor[n/m]*t[m, k-1], {m, 1, n-1}]; Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 03 2012, after PARI *)
PROG
(PARI) {T(n, k)=if(k==1, 1, sum(m=1, n-1, floor(n/m)*T(m, k-1)))}
for(n=1, 12, for(k=1, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A074587.
Sequence in context: A133938 A239829 A210034 * A277812 A134586 A135287
KEYWORD
easy,nice,nonn,tabl
AUTHOR
Paul D. Hanna, Aug 25 2002
STATUS
approved