login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of Moebius polynomial coefficients, read by rows, the n-th row forming the polynomial M(n,x) such that M(n,-1) = mu(n), the Moebius function of n.
9

%I #23 Dec 12 2015 13:11:40

%S 1,1,2,1,4,2,1,7,8,2,1,9,15,10,2,1,13,30,27,12,2,1,15,43,57,39,14,2,1,

%T 19,67,108,98,53,16,2,1,22,90,177,206,151,69,18,2,1,26,123,282,393,

%U 359,220,87,20,2,1,28,149,405,675,752,579,307,107,22,2,1,34,203,594,1109

%N Triangle of Moebius polynomial coefficients, read by rows, the n-th row forming the polynomial M(n,x) such that M(n,-1) = mu(n), the Moebius function of n.

%H T. D. Noe, <a href="/A074586/b074586.txt">Rows n=0..50 of triangle, flattened</a>

%F The n-th row consists of the coefficients of M(n, x) as a polynomial in x, where M(n, x) = 1 + [n/1]*x*M(1, x) + [n/2]*x*M(2, x) + [n/3]*x*M(3, x) +... + [n/(n-1)]*x*M(n-1, x) for n>1, with M(1, x) = 1, where [x] = floor(x).

%F T(n, k) = Sum_{m=1..n-1} [n/m]*T(m, k-1) for n>=k>1, with T(n, 1)=1 for n>=1.

%e The first few Moebius polynomials are as follows:

%e M(1,x) = 1;

%e M(2,x) = 1 + 2*x;

%e M(3,x) = 1 + 4*x + 2*x^2;

%e M(4,x) = 1 + 7*x + 8*x^2 + 2*x^3;

%e M(5,x) = 1 + 9*x + 15*x^2 + 10*x^3 + 2*x^4;

%e M(6,x) = 1 + 13*x + 30*x^2 + 27*x^3 + 12*x^4 + 2*x^5;

%e M(7,x) = 1 + 15*x + 43*x^2 + 57*x^3 + 39*x^4 + 14*x^5 + 2*x^6; ...

%e ILLUSTRATION OF GENERATING METHOD:

%e M(1,x) = 1;

%e M(2,x) = 1 + 2*x*M(1,x) = 1 + 2*x;

%e M(3,x) = 1 + 3*x*M(1,x) + [3/2]*x*M(2,x) = 1 + 3*x + x*(1+2*x) = 1 + 4*x + 2*x^2;

%e M(4,x) = 1 + 4*x*M(1,x) + [4/2]*x*M(2,x) + [4/3]*x*M(3,x) = 1 + 4*x + 2*x*(1 + 2*x) + 1*x*(1 + 4*x + 2*x^2) = 1 + 7*x + 8*x^2 + 2*x^3;

%e M(5,x) = 1 + 5*x*M(1,x) + [5/2]*x*M(2,x) + [5/3]*x*M(3,x) + [5/4]*x*M(4,x) = 1 + 5*x + 2*x*(1 + 2*x) + 1*x*(1 + 4*x + 2*x^2) + 1*x*(1 + 7*x + 8*x^2 + 2*x^3) = 1 + 9*x + 15*x^2 + 10*x^3 + 2*x^4; ...

%e This triangle of coefficients begins:

%e 1

%e 1 2

%e 1 4 2

%e 1 7 8 2

%e 1 9 15 10 2

%e 1 13 30 27 12 2

%e 1 15 43 57 39 14 2

%e 1 19 67 108 98 53 16 2

%e 1 22 90 177 206 151 69 18 2

%e 1 26 123 282 393 359 220 87 20 2

%e 1 28 149 405 675 752 579 307 107 22 2

%e 1 34 203 594 1109 1439 1333 886 414 129 24 2 ...

%t t[n_, 1] = 1; t[n_, k_] := t[n, k] = Sum[ Floor[n/m]*t[m, k-1], {m, 1, n-1}]; Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Oct 03 2012, after PARI *)

%o (PARI) {T(n,k)=if(k==1,1,sum(m=1,n-1,floor(n/m)*T(m,k-1)))}

%o for(n=1,12, for(k=1,n, print1(T(n,k),", "));print(""))

%Y Cf. A074587.

%K easy,nice,nonn,tabl

%O 1,3

%A _Paul D. Hanna_, Aug 25 2002