login
A198135
Decimal expansion of greatest x having 2*x^2+3x=4*cos(x).
3
6, 9, 7, 5, 3, 4, 5, 5, 5, 2, 2, 8, 4, 1, 2, 9, 9, 3, 7, 9, 5, 1, 7, 4, 0, 6, 6, 2, 5, 2, 1, 2, 9, 8, 8, 7, 4, 6, 5, 4, 7, 9, 0, 3, 6, 1, 1, 5, 3, 4, 4, 7, 5, 7, 6, 5, 0, 6, 4, 9, 3, 5, 8, 6, 6, 2, 0, 1, 5, 2, 5, 6, 1, 6, 3, 4, 3, 2, 5, 0, 2, 2, 8, 7, 2, 3, 3, 1, 4, 5, 0, 3, 7, 7, 5, 7, 0, 0, 6
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -1.5399952272668390818059885802040...
greatest x: 0.6975345552284129937951740662521298...
MATHEMATICA
a = 2; b = 3; c = 4;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.54, -1.539}, WorkingPrecision -> 110]
RealDigits[r1](* A198134 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .79, .70}, WorkingPrecision -> 110]
RealDigits[r2](* A198135 *))
CROSSREFS
Cf. A197737.
Sequence in context: A194789 A273082 A065414 * A019813 A096767 A247844
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 22 2011
STATUS
approved