login
A198132
Decimal expansion of least x having 2*x^2+3x=3*cos(x).
3
1, 5, 3, 4, 9, 8, 6, 3, 2, 2, 6, 2, 0, 3, 0, 7, 2, 0, 5, 9, 6, 9, 6, 6, 2, 5, 2, 0, 2, 0, 1, 4, 1, 4, 6, 4, 6, 5, 4, 0, 8, 2, 1, 6, 5, 4, 7, 0, 5, 9, 7, 1, 6, 5, 0, 7, 7, 5, 9, 7, 1, 3, 7, 3, 8, 6, 3, 2, 5, 9, 7, 9, 0, 1, 2, 8, 7, 4, 8, 9, 8, 8, 8, 9, 7, 7, 8, 2, 4, 6, 8, 0, 7, 1, 3, 5, 0, 0, 6
OFFSET
1,2
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -1.53498632262030720596966252020141464...
greatest x: 0.5937808126791590376608164556109947...
MATHEMATICA
a = 2; b = 3; c = 3;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.54, -1.53}, WorkingPrecision -> 110]
RealDigits[r1](* A198132 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .59, .60}, WorkingPrecision -> 110]
RealDigits[r2](* A198133 *)
CROSSREFS
Cf. A197737.
Sequence in context: A070367 A086308 A229943 * A117967 A068116 A275836
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 22 2011
STATUS
approved