login
A198131
Decimal expansion of greatest x having 2*x^2+3x=2*cos(x).
3
4, 5, 8, 0, 6, 1, 0, 8, 6, 8, 3, 0, 8, 3, 8, 0, 4, 8, 9, 0, 4, 1, 5, 6, 4, 9, 0, 0, 2, 3, 1, 2, 5, 5, 1, 2, 7, 0, 2, 4, 9, 8, 7, 8, 6, 0, 0, 9, 3, 5, 4, 9, 1, 0, 7, 2, 4, 6, 7, 3, 8, 6, 2, 7, 8, 9, 3, 1, 6, 8, 3, 4, 2, 1, 8, 1, 7, 8, 3, 0, 4, 3, 6, 0, 4, 6, 3, 6, 2, 8, 4, 6, 3, 6, 3, 6, 6, 3, 6
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -1.52799971203684063352083669388890466...
greatest x: 0.458061086830838048904156490023125512...
MATHEMATICA
a = 2; b = 3; c = 2;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.53, -1.52}, WorkingPrecision -> 110]
RealDigits[r1](* A198130 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .45, .46}, WorkingPrecision -> 110]
RealDigits[r2](* A198131 *)
CROSSREFS
Cf. A197737.
Sequence in context: A292164 A178439 A214584 * A200387 A082468 A152974
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 22 2011
STATUS
approved