login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198130 Decimal expansion of least x having 2*x^2+3x=2*cos(x). 3
1, 5, 2, 7, 9, 9, 9, 7, 1, 2, 0, 3, 6, 8, 4, 0, 6, 3, 3, 5, 2, 0, 8, 3, 6, 6, 9, 3, 8, 8, 8, 9, 0, 4, 6, 6, 3, 6, 7, 6, 3, 7, 5, 9, 3, 9, 9, 4, 1, 6, 2, 5, 9, 9, 2, 0, 8, 7, 2, 7, 8, 7, 3, 2, 5, 4, 0, 3, 7, 9, 1, 6, 5, 3, 5, 9, 8, 1, 0, 2, 5, 1, 2, 5, 7, 5, 0, 2, 9, 4, 2, 8, 6, 0, 8, 7, 8, 9, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A197737 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

least x: -1.52799971203684063352083669388890466...

greatest x: 0.458061086830838048904156490023125...

MATHEMATICA

a = 2; b = 3; c = 2;

f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]

Plot[{f[x], g[x]}, {x, -2, 1}]

r1 = x /. FindRoot[f[x] == g[x], {x, -1.53, -1.52}, WorkingPrecision -> 110]

RealDigits[r1](* A198130 *)

r2 = x /. FindRoot[f[x] == g[x], {x, .45, .46}, WorkingPrecision -> 110]

RealDigits[r2](* A198131 *)

CROSSREFS

Cf. A197737.

Sequence in context: A201423 A155790 A200646 * A309773 A241388 A305574

Adjacent sequences:  A198127 A198128 A198129 * A198131 A198132 A198133

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 22 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 29 02:49 EDT 2020. Contains 337420 sequences. (Running on oeis4.)