login
A273085
Prime divisors of 68^112 - 1, listed with multiplicities.
1
3, 5, 5, 5, 23, 29, 37, 41, 67, 113, 113, 113, 197, 617, 881, 10193, 103867, 521497, 938071, 1106356357, 1546157677, 100343116693, 518914006417, 1145565031404704513, 135178919999357237393881, 620712448371732926474772025689944913040651041015217889164158638163856301549281
OFFSET
1,1
COMMENTS
(68^112-1)/113 is the only known Fermat quotient q_p(b) = (b^(p-1)-1)/p with 1 < b < p and q_p(b) divisible by p^2.
EXAMPLE
68^112 == 1 (mod 113^3), but 68^112 =/= 1 (mod 113^4), so 113 appears three times in the sequence.
PROG
(PARI) forprime(p=1, 68^112-1, my(k=1); while(Mod(68, p^k)^112==1, print1(p, ", "); k++))
CROSSREFS
Sequence in context: A088961 A079090 A182262 * A329765 A258714 A143082
KEYWORD
nonn,fini,full
AUTHOR
Felix Fröhlich, May 14 2016
STATUS
approved