The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A273087 Decimal expansion of theta_3(0, exp(-sqrt(2)*Pi)), where theta_3 is the 3rd Jacobi theta function. 3
 1, 0, 2, 3, 5, 2, 3, 9, 9, 9, 3, 4, 1, 0, 0, 5, 8, 6, 3, 4, 9, 7, 7, 9, 8, 6, 5, 6, 7, 2, 4, 9, 7, 1, 8, 5, 2, 5, 6, 4, 9, 1, 4, 6, 0, 7, 9, 4, 8, 7, 8, 4, 7, 4, 1, 8, 7, 2, 1, 5, 1, 9, 8, 5, 8, 7, 4, 1, 3, 4, 7, 9, 7, 7, 6, 7, 8, 4, 6, 0, 3, 1, 1, 1, 3, 0, 2, 2, 8, 5, 7, 7, 4, 6, 8, 7, 6, 0, 1, 9, 3, 3, 5, 5, 0 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS G. C. Greubel, Table of n, a(n) for n = 1..5000 Eric Weisstein's MathWorld, Jacobi Theta Functions Wikipedia, Theta function FORMULA Equals Gamma(1/8)/(2^(9/8)*sqrt(Pi*Gamma(1/4))). EXAMPLE 1.0235239993410058634977986567249718525649146079487847418721... MAPLE evalf(GAMMA(1/8)/(2^(9/8)*sqrt(Pi*GAMMA(1/4))), 120); MATHEMATICA RealDigits[EllipticTheta[3, 0, Exp[-Sqrt[2]*Pi]], 10, 105][[1]] RealDigits[Gamma[1/8]/(2^(9/8)*Sqrt[Pi*Gamma[1/4]]), 10, 105][[1]] PROG (PARI) th3(x)=1 + 2*suminf(n=1, x^n^2) th3(exp(-sqrt(2)*Pi)) \\ Charles R Greathouse IV, Jun 06 2016 (MAGMA) C := ComplexField(); Gamma(1/8)/(2^(9/8)*Sqrt(Pi(C)*Gamma(1/4))) // G. C. Greubel, Jan 07 2018 CROSSREFS Cf. A175573, A247217, A273081, A273082, A273083, A273084, A273086. Sequence in context: A232931 A060084 A265668 * A236434 A138182 A167835 Adjacent sequences:  A273084 A273085 A273086 * A273088 A273089 A273090 KEYWORD nonn,cons AUTHOR Vaclav Kotesovec, May 14 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 13 12:29 EDT 2021. Contains 342936 sequences. (Running on oeis4.)