login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374155
a(n) is the least prime that is a quadratic residue modulo prime(n). First column of A373751.
1
2, 3, 5, 2, 3, 3, 2, 5, 2, 5, 2, 3, 2, 11, 2, 7, 3, 3, 17, 2, 2, 2, 3, 2, 2, 5, 2, 3, 3, 2, 2, 3, 2, 5, 5, 2, 3, 41, 2, 13, 3, 3, 2, 2, 7, 2, 5, 2, 3, 3, 2, 2, 2, 3, 2, 2, 5, 2, 3, 2, 7, 17, 7, 2, 2, 7, 5, 2, 3, 3, 2, 2, 2, 3, 5, 2, 5, 3, 2, 2, 3, 3, 2, 2, 2
OFFSET
1,1
EXAMPLE
a(38) = 41 because row 38 of A373751 starts 41, 43, 47, ..., which are the primes that are quadratic residues modulo 163.
MAPLE
a := proc(n) local a, p; a := 1; p := ithprime(n); while true do a := a + 1;
if NumberTheory:-QuadraticResidue(a, p) = 1 and isprime(a) then return a fi od end: seq(a(n), n = 1..85);
PROG
(PARI) a(n) = my(p=prime(n), q=2); while (!issquare(Mod(q, p)), q=nextprime(q+1)); q; \\ Michel Marcus, Jun 29 2024
CROSSREFS
Variant: A306530 (differs in the first 3 values).
Cf. A373751.
Sequence in context: A133907 A232931 A060084 * A361503 A265668 A273087
KEYWORD
nonn
AUTHOR
Peter Luschny, Jun 29 2024
STATUS
approved