login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374158
a(n) is the smallest nonnegative integer k where exactly n pairs of positive integers (x, y) exist such that x^2 + 3*y^2 = k.
5
0, 4, 91, 28, 196, 31213, 364, 9604, 53599, 2548, 470596
OFFSET
0,2
COMMENTS
a(n) is the smallest nonnegative k such that A092573(k) = n.
a(11) <= 3672178237.
a(12) = 6916.
a(13) = 33124.
a(14) = 29059303.
a(15) = 124852.
a(16) = 1983163.
a(18) = 48412.
a(20) = 18384457.
a(21) = 6117748.
a(22) = 1623076.
a(24) = 214396.
a(27) = 629356.
a(28) = 900838393.
a(31) = 79530724.
a(32) = 85276009.
a(37) = 274299844.
a(42) = 116237212.
a(60) = 73537828.
a(67) = 585930436.
From Chai Wah Wu, Jun 29-30 2024: (Start)
a(30) = 2372188.
a(36) = 1500772.
a(40) = 11957764.
a(45) = 30838444.
a(48) = 7932652.
a(54) = 19510036.
a(72) = 55528564.
(End)
EXAMPLE
n | a(n)
-----+---------------------------
1 | 4 = 2^2.
2 | 91 = 7 * 13.
3 | 28 = 2^2 * 7.
4 | 196 = 2^2 * 7^2.
5 | 31213 = 7^4 * 13.
6 | 364 = 2^2 * 7 * 13.
7 | 9604 = 2^2 * 7^4.
8 | 53599 = 7 * 13 * 19 * 31.
9 | 2548 = 2^2 * 7^2 * 13.
10 | 470596 = 2^2 * 7^6.
PROG
(Python)
from itertools import count
from sympy.abc import x, y
from sympy.solvers.diophantine.diophantine import diop_quadratic
def A374158(n): return next(m for m in count(0) if sum(1 for d in diop_quadratic(x**2+3*y**2-m) if d[0]>0 and d[1]>0)==n) # Chai Wah Wu, Jun 29 2024
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Seiichi Manyama, Jun 29 2024
STATUS
approved