login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of theta_3(0, exp(-2*Pi)), where theta_3 is the 3rd Jacobi theta function.
8

%I #29 Nov 11 2024 01:57:44

%S 1,0,0,3,7,3,4,8,8,5,4,8,7,7,3,9,0,9,1,0,4,7,6,7,9,5,9,5,0,6,6,9,5,3,

%T 8,6,6,2,0,7,9,9,4,3,3,2,4,4,4,5,1,9,4,0,8,2,5,4,9,5,8,1,5,3,2,4,7,3,

%U 2,5,1,7,3,3,2,9,5,6,3,7,9,8,0,5,6,9,4,9,8,3,2,1,6,6,4,4,4,2,3,5,2,7

%N Decimal expansion of theta_3(0, exp(-2*Pi)), where theta_3 is the 3rd Jacobi theta function.

%H G. C. Greubel, <a href="/A247217/b247217.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Theta_function#Explicit_values">Theta function</a>

%F Equals (4*Pi*sqrt(2) + 6*Pi)^(1/4)/(2*Gamma(3/4)).

%F Equals Sum_{n=-infinity..infinity} exp(-2*Pi*n^2).

%e 1.0037348854877390910476795950669538662079943324445194...

%t RealDigits[(4*Pi*Sqrt[2] + 6*Pi)^(1/4)/(2*Gamma[3/4]), 10, 102] // First

%o (PARI) (4*Pi*sqrt(2) + 6*Pi)^(1/4)/(2*gamma(3/4)) \\ _Michel Marcus_, Nov 26 2014

%o (Magma) C<i> := ComplexField(); (4*Pi(C)*Sqrt(2) + 6*Pi(C))^(1/4)/(2*Gamma(3/4)); // _G. C. Greubel_, Jan 07 2018

%Y Cf. A000122, A175573 (theta_3(0, exp(-Pi))), A273081, A273082, A273083, A273084.

%Y Cf. A273087, A273086.

%K nonn,cons,easy

%O 1,4

%A _Jean-François Alcover_, Nov 26 2014