The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247215 Integers k such that 3k+1 and 6k+1 are both squares. 1
 0, 8, 280, 9520, 323408, 10986360, 373212840, 12678250208, 430687294240, 14630689753960, 497012764340408, 16883803297819920, 573552299361536880, 19483894374994434008, 661878856450449219400, 22484397224940279025600, 763807626791519037651008 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Colin Barker, Table of n, a(n) for n = 1..650 Index entries for linear recurrences with constant coefficients, signature (35,-35,1). FORMULA a(n) = (1/72)*(3*(3*(17-12*sqrt(2))^n+2*sqrt(2)*(17-12*sqrt(2))^n+3*(17+12*sqrt(2))^n-2*sqrt(2)*(17+12*sqrt(2))^n)-18). From Colin Barker, Nov 26 2014: (Start) a(n) = 8*A029546(n). a(n) = 35*a(n-1)-35*a(n-2)+a(n-3). G.f.: -8*x^2 / ((x-1)*(x^2-34*x+1)). (End) Lim_{n -> infinity} a(n+1)/a(n) = 33.970562748... = (1+sqrt(2))^4 (the dominant root of x^2-34*x+1). - Joerg Arndt, Dec 01 2014 EXAMPLE When n=1, a(1)=0, 3(0)+1=1, 6(0)+1=1. When n=2, a(2)=8, 3(8)+1=25, 6(8)+1=49. When n=3, a(3)=280, 3(280)+1=841=29^2, 6(280)+1=1681=41^2. When n=4, a(4)=9520, 3(9520)+1=28560=169^2, 6(9520)+1=57121=239^2. PROG (PARI) concat(0, Vec(-8*x^2/((x-1)*(x^2-34*x+1)) + O(x^100))) \\ Colin Barker, Nov 26 2014 CROSSREFS The common terms of A062717 and A001082. Sequence in context: A296411 A281763 A280761 * A079929 A226415 A226346 Adjacent sequences: A247212 A247213 A247214 * A247216 A247217 A247218 KEYWORD nonn,easy AUTHOR Casey Leung, Nov 26 2014 EXTENSIONS More terms from Colin Barker, Nov 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 2 19:53 EDT 2024. Contains 374875 sequences. (Running on oeis4.)