login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

14-almost primes (generalization of semiprimes).
29

%I #31 Nov 04 2024 09:30:14

%S 16384,24576,36864,40960,55296,57344,61440,82944,86016,90112,92160,

%T 102400,106496,124416,129024,135168,138240,139264,143360,153600,

%U 155648,159744,186624,188416,193536,200704,202752,207360,208896,215040,225280

%N 14-almost primes (generalization of semiprimes).

%C Product of 14 not necessarily distinct primes.

%C Divisible by exactly 14 prime powers (not including 1).

%C Any 14-almost prime can be represented in several ways as a product of two 7-almost primes A046308; and in several ways as a product of seven semiprimes A001358. - _Jonathan Vos Post_, Dec 11 2004

%H D. W. Wilson, <a href="/A069275/b069275.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AlmostPrime.html">Almost Prime.</a>

%F Product p_i^e_i with Sum e_i = 14.

%t Select[Range[50000], Plus @@ Last /@ FactorInteger[ # ] == 14 &] (* _Vladimir Joseph Stephan Orlovsky_, Apr 23 2008 *)

%o (PARI) k=14; start=2^k; finish=240000; v=[]; for(n=start,finish, if(bigomega(n)==k,v=concat(v,n))); v

%o (Python)

%o from math import isqrt, prod

%o from sympy import primerange, integer_nthroot, primepi

%o def A069275(n):

%o def bisection(f,kmin=0,kmax=1):

%o while f(kmax) > kmax: kmax <<= 1

%o while kmax-kmin > 1:

%o kmid = kmax+kmin>>1

%o if f(kmid) <= kmid:

%o kmax = kmid

%o else:

%o kmin = kmid

%o return kmax

%o def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))

%o def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,14)))

%o return bisection(f,n,n) # _Chai Wah Wu_, Nov 03 2024

%Y Cf. A101637, A101638, A101605, A101606.

%Y Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), this sequence(r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - _Jason Kimberley_, Oct 02 2011

%K nonn

%O 1,1

%A _Rick L. Shepherd_, Mar 13 2002