Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Aug 07 2021 08:21:03
%S 117,160,203,225,234,318,319,319,320,351,406,429,450,468,468,480,585,
%T 595,595,595,609,612,636,638,638,640,671,675,680,680,697,697,702,741,
%U 780,800,812,819,858,884,884,888,900,925,935,936,936,954,957,957,960,990,990
%N Longest side of Heronian tetrahedron.
%C A Heronian tetrahedron or perfect tetrahedron is a tetrahedron whose edge lengths, face areas and volume are all integers.
%H R. H. Buchholz, <a href="https://doi.org/10.1017/S0004972700030252">Perfect Pyramids</a>, Bull. Austral. Math. Soc. 45, 353-368, 1992.
%H Susan H. Marshall and Alexander R. Perlis, <a href="http://www.maa.org/sites/default/files/pdf/upload_library/2/Marshall2-Monthly-2014.pdf">Heronian Tetrahedra Are Lattice Tetrahedra</a>, American Mathematical Monthly 120:2 (2013), 140-149.
%H Ivars Peterson, <a href="https://www.sciencenews.org/article/perfect-pyramids">Perfect pyramids</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HeronianTetrahedron.html">Heronian Tetrahedron</a>.
%e The following are examples of Heronian tetrahedra.
%e dAB, dAC, dBC, dCD, dBD, dAD, SABC, SABD, SACD, SBCD, Volume
%e 117, 84, 51, 52, 53, 80, 1890, 1800, 2016, 1170, 18144
%e 160, 153, 25, 39, 56, 120, 1872, 2688, 1404, 420, 8064
%e 203, 195, 148, 203, 195, 148, 13650, 13650, 13650, 13650, 611520
%e 225, 200, 65, 119, 156, 87, 6300, 4914, 2436, 3570, 35280
%e 234, 168, 102, 104, 106, 160, 7560, 7200, 8064, 4680, 145152
%e 318, 221, 203, 42, 175, 221, 22260, 18564, 4620, 2940, 206976
%e 319, 318, 175, 175, 210, 221, 26796, 23100, 18564, 14700, 1034880
%e 319, 318, 175, 203, 252, 221, 26796, 27720, 22260, 17640, 1241856
%e 320, 306, 50, 78, 112, 240, 7488, 10752, 5616, 1680, 64512
%e 351, 252, 153, 156, 159, 240, 17010, 16200, 18144, 10530, 489888
%e where
%e dPQ is the distance between vertices P and Q and
%e SPQR is the area of triangle PQR.
%t aMax=360(*WARNING:takes a long time*);
%t heron=1/4Sqrt[(#1+#2+#3)(-#1+#2+#3)(#1-#2+#3)(#1+#2-#3)]&;
%t cayley=1/24Sqrt[2Det[{
%t {0,1,1,1,1},
%t {1,0,#1^2,#2^2,#6^2},
%t {1,#1^2,0,#3^2,#5^2},
%t {1,#2^2,#3^2,0,#4^2},
%t {1,#6^2,#5^2,#4^2,0}
%t }]]&;
%t Do[
%t S1=heron[a,b,c];
%t If[S1//IntegerQ//Not,Continue[]];
%t Do[
%t S2=heron[a,e,f];
%t If[S2//IntegerQ//Not,Continue[]];
%t Do[
%t If[b==e&&c>f||b==f&&c>e,Continue[]];
%t S3=heron[b,d,f];
%t If[S3//IntegerQ//Not,Continue[]];
%t S4=heron[c,d,e];
%t If[S4//IntegerQ//Not,Continue[]];
%t V=cayley[a,b,c,d,e,f];
%t If[V//IntegerQ//Not,Continue[]];
%t If[V==0,Continue[]];
%t a//Sow(*{a,b,c,d,e,f,S1,S2,S3,S4,V}//Sow*);
%t ,{d,Sqrt[((b^2-c^2+e^2-f^2)/(2a))^2+4((S1-S2)/a)^2]//Ceiling,Min[a,Sqrt[((b^2-c^2+e^2-f^2)/(2a))^2+4((S1+S2)/a)^2]]}];
%t ,{e,a-b+1,b},{f,a-e+1,b}];
%t ,{a,117,aMax},{b,a/2//Ceiling,a},{c,a-b+1,b}]//Reap//Last//Last
%Y Cf. A120131, A120132, A120133.
%K nonn
%O 1,1
%A _Albert Lau_, May 19 2016
%E a(11)-a(53) from _Giovanni Resta_, May 20 2016