login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247610
a(n) = Sum_{k=0..5} binomial(10,k)*binomial(n,k).
2
1, 11, 66, 286, 1001, 3003, 7798, 17858, 36873, 70003, 124130, 208110, 333025, 512435, 762630, 1102882, 1555697, 2147067, 2906722, 3868382, 5070009, 6554059, 8367734, 10563234, 13198009, 16335011, 20042946, 24396526, 29476721, 35371011, 42173638, 49985858
OFFSET
0,2
LINKS
C. Krattenthaler, Advanced determinant calculus Séminaire Lotharingien de Combinatoire, B42q (1999), 67 pp, (see p. 54).
FORMULA
G.f.: (1 + 5*x + 15*x^2 + 35*x^3 + 70*x^4 + 126*x^5) / (1-x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = (20 + 508*n - 925*n^2 + 820*n^3 - 245*n^4 + 42*n^5)/20.
MATHEMATICA
Table[(20 + 508 n - 925 n^2 + 820 n^3 - 245 n^4 + 42 n^5)/20, {n, 0, 40}] (* or *) CoefficientList[Series[(1 + 5 x + 15 x^2 + 35 x^3 + 70 x^4 + 126 x^5)/(1 - x)^6, {x, 0, 40}], x]
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 11, 66, 286, 1001, 3003}, 40] (* Harvey P. Dale, Apr 20 2022 *)
PROG
(Magma) [(20+508*n-925*n^2+820*n^3-245*n^4+42*n^5)/20: n in [0..40]]; /* or */ I:=[1, 11, 66, 286, 1001, 3003]; [n le 6 select I[n] else 6*Self(n-1)-15*Self(n-2)+20*Self(n-3)-15*Self(n-4)+6*Self(n-5)-Self(n-6): n in [1..40]];
(Sage) m=5; [sum((binomial(2*m, k)*binomial(n, k)) for k in (0..m)) for n in (0..40)] # Bruno Berselli, Sep 22 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Sep 22 2014
STATUS
approved