The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247613 a(n) = Sum_{k=0..8} binomial(16,k)*binomial(n,k). 1
 1, 17, 153, 969, 4845, 20349, 74613, 245157, 735471, 2031535, 5189327, 12316239, 27322191, 57029103, 112740255, 212383935, 383358645, 666220005, 1119362365, 1824861005, 2895653673, 4484253081, 6793194849, 10087438257, 14708950035, 21093714291 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 C. Krattenthaler, Advanced determinant calculus Séminaire Lotharingien de Combinatoire, B42q (1999), 67 pp, (see p. 54). Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1). FORMULA G.f.: (1 + 8*x + 36*x^2 + 120*x^3 + 330*x^4 + 792*x^5 + 1716*x^6 + 3432*x^7 + 6435*x^8) / (1-x)^9. a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9). a(n) = (20160 - 15076944*n + 40499716*n^2 - 42247940*n^3 + 23174515*n^4 - 7234136*n^5 + 1335334*n^6 - 134420*n^7 + 6435*n^8) / 20160. MATHEMATICA Table[(20160 - 15076944 n + 40499716 n^2 - 42247940 n^3 + 23174515 n^4 - 7234136 n^5 + 1335334 n^6 - 134420 n^7 + 6435 n^8)/20160, {n, 0, 40}] (* or *) CoefficientList[Series[(1 + 8 x + 36 x^2 + 120 x^3 + 330 x^4 + 792 x^5 + 1716 x^6 + 3432 x^7 + 6435 x^8)/(1 - x)^9, {x, 0, 40}], x] Table[Sum[Binomial[16, k]Binomial[n, k], {k, 0, 8}], {n, 0, 30}] (* or *) LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 17, 153, 969, 4845, 20349, 74613, 245157, 735471}, 40] (* Harvey P. Dale, Mar 25 2015 *) PROG (Magma) m:=8; [&+[Binomial(2*m, k)*Binomial(n, k): k in [0..m]]: n in [0..40]]; /* or */ [(20160-15076944*n+40499716*n^2-42247940*n^3 +23174515*n^4-7234136*n^5+1335334*n^6-134420*n^7 +6435*n^8)/20160: n in [0..40]]; (Sage) m=8; [sum((binomial(2*m, k)*binomial(n, k)) for k in (0..m)) for n in (0..40)] # Bruno Berselli, Sep 23 2014 CROSSREFS Cf. A005408, A056108, A247608 - A247612. Sequence in context: A139617 A188353 A162637 * A010969 A022582 A164543 Adjacent sequences: A247610 A247611 A247612 * A247614 A247615 A247616 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Sep 23 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 04:32 EST 2023. Contains 367541 sequences. (Running on oeis4.)