OFFSET
16,2
COMMENTS
a(n) = A110555(n+1,16). - Reinhard Zumkeller, Jul 27 2005
Coordination sequence for 16-dimensional cyclotomic lattice Z[zeta_17].
In this sequence only 17 is prime. - Artur Jasinski, Dec 02 2007
LINKS
T. D. Noe, Table of n, a(n) for n = 16..1000
Matthias Beck and Serkan Hosten, Cyclotomic polytopes and growth series of cyclotomic lattices, arXiv:math/0508136 [math.CO], 2005-2006.
Milan Janjic, Two Enumerative Functions.
Index entries for linear recurrences with constant coefficients, signature (17, -136, 680, -2380, 6188, -12376, 19448, -24310, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1).
FORMULA
a(n+15) = n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)(n+9)(n+10)(n+11)(n+12)(n+13)(n+14)(n+15)/16!. - Artur Jasinski, Dec 02 2007
G.f.: x^16/(1-x)^17. - Zerinvary Lajos, Aug 06 2008; R. J. Mathar, Jul 07 2009
a(n) = n/(n-16) * a(n-1), n > 16. - Vincenzo Librandi, Mar 26 2011
From Amiram Eldar, Dec 10 2020: (Start)
Sum_{n>=16} 1/a(n) = 16/15.
MAPLE
seq(binomial(n, 16), n=16..37); # Zerinvary Lajos, Aug 06 2008
MATHEMATICA
Table[Binomial[n, 16], {n, 16, 50}] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2011 *)
PROG
(Magma) [ Binomial(n, 16): n in [16..80]]; // Vincenzo Librandi, Mar 26 2011
(PARI) for(n=16, 50, print1(binomial(n, 16), ", ")) \\ G. C. Greubel, Aug 31 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Some formulas adjusted to the offset by R. J. Mathar, Jul 07 2009
STATUS
approved