|
|
A010969
|
|
a(n) = binomial(n,16).
|
|
4
|
|
|
1, 17, 153, 969, 4845, 20349, 74613, 245157, 735471, 2042975, 5311735, 13037895, 30421755, 67863915, 145422675, 300540195, 601080390, 1166803110, 2203961430, 4059928950, 7307872110, 12875774670, 22239974430, 37711260990, 62852101650, 103077446706, 166509721602
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
16,2
|
|
COMMENTS
|
Coordination sequence for 16-dimensional cyclotomic lattice Z[zeta_17].
|
|
LINKS
|
|
|
FORMULA
|
a(n+15) = n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)(n+9)(n+10)(n+11)(n+12)(n+13)(n+14)(n+15)/16!. - Artur Jasinski, Dec 02 2007
Sum_{n>=16} 1/a(n) = 16/15.
Sum_{n>=16} (-1)^n/a(n) = A001787(16)*log(2) - A242091(16)/15! = 524288*log(2) - 16369704448/45045 = 0.9468480104... (End)
|
|
MAPLE
|
|
|
MATHEMATICA
|
|
|
PROG
|
(PARI) for(n=16, 50, print1(binomial(n, 16), ", ")) \\ G. C. Greubel, Aug 31 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Some formulas adjusted to the offset by R. J. Mathar, Jul 07 2009
|
|
STATUS
|
approved
|
|
|
|