|
|
A162637
|
|
G.f. is the polynomial (Product_{k=1..17} (1 - x^(3*k)))/(1-x)^17.
|
|
1
|
|
|
1, 17, 153, 968, 4828, 20196, 73643, 240295, 714969, 1967393, 5061733, 12282075, 28304167, 62307023, 131649309, 268075466, 527904757, 1008342693, 1873000449, 3390989490, 5995666674, 10371347659, 17579210264, 29237321394, 47774409494
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
This is a row of the triangle in A162499. Only finitely many terms are nonzero.
|
|
LINKS
|
|
|
MAPLE
|
m:=17: seq(coeff(series(mul((1-x^(3*k)), k=1..m)/(1-x)^m, x, n+1), x, n), n=0..24); # Muniru A Asiru, Jul 07 2018
|
|
MATHEMATICA
|
CoefficientList[Series[Times@@(1-x^(3*Range[17]))/(1-x)^17, {x, 0, 50}], x] (* G. C. Greubel, Jul 06 2018 *)
|
|
PROG
|
(PARI) x='x+O('x^50); A = prod(k=1, 17, (1-x^(3*k)))/(1-x)^17; Vec(A) \\ G. C. Greubel, Jul 0762018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); F:=(&*[(1-x^(3*k)): k in [1..17]])/(1-x)^17; Coefficients(R!(F)); // G. C. Greubel, Jul 06 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|