login
G.f. is the polynomial (Product_{k=1..17} (1 - x^(3*k)))/(1-x)^17.
1

%I #12 Sep 08 2022 08:45:46

%S 1,17,153,968,4828,20196,73643,240295,714969,1967393,5061733,12282075,

%T 28304167,62307023,131649309,268075466,527904757,1008342693,

%U 1873000449,3390989490,5995666674,10371347659,17579210264,29237321394,47774409494

%N G.f. is the polynomial (Product_{k=1..17} (1 - x^(3*k)))/(1-x)^17.

%C This is a row of the triangle in A162499. Only finitely many terms are nonzero.

%H G. C. Greubel, <a href="/A162637/b162637.txt">Table of n, a(n) for n = 0..442</a>

%p m:=17: seq(coeff(series(mul((1-x^(3*k)),k=1..m)/(1-x)^m, x,n+1),x,n),n=0..24); # _Muniru A Asiru_, Jul 07 2018

%t CoefficientList[Series[Times@@(1-x^(3*Range[17]))/(1-x)^17, {x, 0, 50}], x] (* _G. C. Greubel_, Jul 06 2018 *)

%o (PARI) x='x+O('x^50); A = prod(k=1, 17, (1-x^(3*k)))/(1-x)^17; Vec(A) \\ _G. C. Greubel_, Jul 0762018

%o (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); F:=(&*[(1-x^(3*k)): k in [1..17]])/(1-x)^17; Coefficients(R!(F)); // _G. C. Greubel_, Jul 06 2018

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Dec 02 2009