|
|
A085020
|
|
a(n) = Sum_{d|n, (d+1) prime} (d + 1).
|
|
4
|
|
|
2, 5, 2, 10, 2, 12, 2, 10, 2, 16, 2, 30, 2, 5, 2, 27, 2, 31, 2, 21, 2, 28, 2, 30, 2, 5, 2, 39, 2, 54, 2, 27, 2, 5, 2, 86, 2, 5, 2, 62, 2, 55, 2, 33, 2, 52, 2, 47, 2, 16, 2, 63, 2, 31, 2, 39, 2, 64, 2, 133, 2, 5, 2, 27, 2, 102, 2, 10, 2, 87, 2, 159, 2, 5, 2, 10, 2, 91, 2, 79, 2, 88, 2, 102, 2, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
a(18) = 31 because the divisors of 18 are [1, 2, 3, 6, 9, 18] and 2 + 3 + 7 + 19 = 31.
|
|
MAPLE
|
T := proc(n, k) local i; numtheory[divisors](n); select(isprime, map(i->i+k, %)); add(i, i=%) end: seq(T(n+1, 1), n=0..20); # Peter Luschny, May 04 2009
|
|
MATHEMATICA
|
a[n_] := Sum[If[PrimeQ[d+1], d+1, 0], {d, Divisors[n]}]; Array[a, 100] (* Jean-François Alcover, Jun 04 2019 *)
|
|
PROG
|
(PARI) a(n) = sumdiv(n, d, if (isprime(q=d+1), q)); \\ Michel Marcus, Aug 14 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|