login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085020
a(n) = Sum_{d|n, (d+1) prime} (d + 1).
4
2, 5, 2, 10, 2, 12, 2, 10, 2, 16, 2, 30, 2, 5, 2, 27, 2, 31, 2, 21, 2, 28, 2, 30, 2, 5, 2, 39, 2, 54, 2, 27, 2, 5, 2, 86, 2, 5, 2, 62, 2, 55, 2, 33, 2, 52, 2, 47, 2, 16, 2, 63, 2, 31, 2, 39, 2, 64, 2, 133, 2, 5, 2, 27, 2, 102, 2, 10, 2, 87, 2, 159, 2, 5, 2, 10, 2, 91, 2, 79, 2, 88, 2, 102, 2, 5
OFFSET
1,1
LINKS
EXAMPLE
a(18) = 31 because the divisors of 18 are [1, 2, 3, 6, 9, 18] and 2 + 3 + 7 + 19 = 31.
MAPLE
T := proc(n, k) local i; numtheory[divisors](n); select(isprime, map(i->i+k, %)); add(i, i=%) end: seq(T(n+1, 1), n=0..20); # Peter Luschny, May 04 2009
MATHEMATICA
a[n_] := Sum[If[PrimeQ[d+1], d+1, 0], {d, Divisors[n]}]; Array[a, 100] (* Jean-François Alcover, Jun 04 2019 *)
PROG
(PARI) a(n) = sumdiv(n, d, if (isprime(q=d+1), q)); \\ Michel Marcus, Aug 14 2017
CROSSREFS
Cf. A067513.
Cf. A008472. [Peter Luschny, May 04 2009]
Sequence in context: A119764 A178310 A210697 * A358309 A276609 A292591
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Jun 18 2003
STATUS
approved