|
|
A085023
|
|
E.g.f. satisfies exp(x*sum(n>=0, floor(a(n)/n!)*x^n)) = sum(n>=0, a(n)*x^n/n!).
|
|
2
|
|
|
1, 1, 3, 13, 97, 981, 12331, 187153, 3319233, 67362697, 1540796851, 39256807701, 1102344130273, 33822265578973, 1125785761963227, 40407886961046361, 1555858721974047361, 63972335301256871313, 2797676940942967706083
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
|
|
LINKS
|
|
|
EXAMPLE
|
exp(x*(1 + x + floor(3/2!)*x^2 + floor(13/3!)*x^3 + floor(97/4!)*x^4 + ...)) = 1 + x + (3/2!)*x^2 + (13/3!)*x^3 + (97/4!)*x^4 + ...
|
|
PROG
|
(PARI) {a(n)=local(A); if(n<0, 0, A=1+O(x); for(m=1, n, A=Pol(A)+x^m*(floor(polcoeff(exp(x*A), m))+O(x)); ); n!*polcoeff(exp(x*A), n))}
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|