login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{d|n, (d+1) prime} (d + 1).
4

%I #17 Jun 04 2019 03:01:06

%S 2,5,2,10,2,12,2,10,2,16,2,30,2,5,2,27,2,31,2,21,2,28,2,30,2,5,2,39,2,

%T 54,2,27,2,5,2,86,2,5,2,62,2,55,2,33,2,52,2,47,2,16,2,63,2,31,2,39,2,

%U 64,2,133,2,5,2,27,2,102,2,10,2,87,2,159,2,5,2,10,2,91,2,79,2,88,2,102,2,5

%N a(n) = Sum_{d|n, (d+1) prime} (d + 1).

%H Michel Marcus, <a href="/A085020/b085020.txt">Table of n, a(n) for n = 1..10000</a>

%e a(18) = 31 because the divisors of 18 are [1, 2, 3, 6, 9, 18] and 2 + 3 + 7 + 19 = 31.

%p T := proc(n,k) local i; numtheory[divisors](n); select(isprime, map(i->i+k, %)); add(i,i=%) end: seq(T(n+1,1),n=0..20); # _Peter Luschny_, May 04 2009

%t a[n_] := Sum[If[PrimeQ[d+1], d+1, 0], {d, Divisors[n]}]; Array[a, 100] (* _Jean-François Alcover_, Jun 04 2019 *)

%o (PARI) a(n) = sumdiv(n, d, if (isprime(q=d+1), q)); \\ _Michel Marcus_, Aug 14 2017

%Y Cf. A067513.

%Y Cf. A008472. [_Peter Luschny_, May 04 2009]

%K easy,nonn

%O 1,1

%A _Jason Earls_, Jun 18 2003