login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of distinct prime divisors of Lucas(n).
2

%I #17 Sep 03 2019 14:41:00

%S 2,0,3,2,7,11,5,29,47,21,44,199,32,521,284,44,2207,3571,112,9349,2168,

%T 242,353,600,1152,263,90484,5800,14510,19548,2567,3010349,5568,10102,

%U 63513,1022,103713,54018521,29134604,1461,4689,370248451,1796,151190,2118,785

%N Sum of distinct prime divisors of Lucas(n).

%H Amiram Eldar, <a href="/A219187/b219187.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = A008472(A000032(n)). - _Amiram Eldar_, Sep 03 2019

%e a(6) = 5 because Lucas(6) = 21 and the sum of the prime divisors {3, 7} equals 10.

%p with (numtheory):with(combinat,fibonacci):

%p sopf:= proc(n) local e, j; e := ifactors(fibonacci(n+1)+fibonacci(n-1))[2]:

%p add (e[j][1], j=1..nops(e)) end:

%p seq (sopf(n), n=0..100);

%t Array[If[#==1, 0, Plus@@First/@FactorInteger[LucasL[ # ]]]&, 50, 0]

%Y Cf. A000032, A008472, A080648, A219177.

%K nonn

%O 0,1

%A _Michel Lagneau_, Nov 14 2012

%E a(0) prepended by _Amiram Eldar_, Sep 03 2019