login
A279290
Sum of cubes of nonprime divisors of n.
1
1, 1, 1, 65, 1, 217, 1, 577, 730, 1001, 1, 2009, 1, 2745, 3376, 4673, 1, 6778, 1, 9065, 9262, 10649, 1, 16345, 15626, 17577, 20413, 24761, 1, 31592, 1, 37441, 35938, 39305, 42876, 55226, 1, 54873, 59320, 73577, 1, 86310, 1, 95897, 95230, 97337, 1, 131033, 117650, 141626, 132652, 158249, 1, 183925, 166376
OFFSET
1,4
COMMENTS
a(n) = 1 when n = 1 or n is prime.
a(p^k) = (p^(3*k+3) - 1)/(p^3 - 1) - p^3 for p is prime.
FORMULA
a(n) = A001158(n) - A005064(n).
EXAMPLE
a(4) = 65 because 4 has 2 nonprime divisors {1,4} and 1^3 + 4^3 = 65.
MATHEMATICA
Table[DivisorSum[n, #1^3 & , !PrimeQ[#1] & ], {n, 55}]
Table[DivisorSigma[3, n] - DivisorSum[n, #1^3 & , PrimeQ[#1] & ], {n, 55}]
Table[Total[Select[Divisors[n], !PrimeQ[#]&]^3], {n, 60}] (* Harvey P. Dale, Aug 02 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Dec 12 2016
STATUS
approved