The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A109362 Period 6: repeat [0, 0, 1, 2, 0, 3]. 0
 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1). FORMULA G.f.: x^2*(1 + 2*x + 3*x^3)/((1 - x)*(x + 1)*(x^2 + x + 1)*(x^2 - x + 1)). [corrected by Georg Fischer, May 15 2019] a(n) = (1/30)*(17*(n mod 6) - 13*((n+1) mod 6) + 12*((n+2) mod 6) - 3*((n+3) mod 6) - 3*((n+4) mod 6) + 2*((n+5) mod 6)). - Paolo P. Lava, Nov 27 2006 a(n) = (3 - cos(n*Pi/3) - 2*cos(n*Pi) - sqrt(3)*sin(n*Pi/3) - 2*sqrt(3)*sin(2*n*Pi/3)) / 3. - Wesley Ivan Hurt, Apr 26 2020 MATHEMATICA PadRight[{}, 100, {0, 0, 1, 2, 0, 3}] (* or *) LinearRecurrence[{0, 0, 0, 0, 0, 1}, {0, 0, 1, 2, 0, 3}, 100] (* Georg Fischer, May 15 2019 *) PROG Floretion Algebra Multiplication Program, FAMP Code: 1em[I]sumseq[ - .25'i - .5'j - .25i' - .5j' + .25'ii' + .25'jj' - .75'kk' + .25'jk' + .25'kj' + .25e]; sumtype: (Y[15], *, sum) (PARI) a(n)=[0, 0, 1, 2, 0, 3][n%6+1]; \\ Georg Fischer, May 15 2019 CROSSREFS Sequence in context: A261727 A234579 A309332 * A085246 A268726 A035182 Adjacent sequences:  A109359 A109360 A109361 * A109363 A109364 A109365 KEYWORD nonn,easy AUTHOR Creighton Dement, Aug 22 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 12 23:52 EDT 2022. Contains 356077 sequences. (Running on oeis4.)