|
|
A109362
|
|
Period 6: repeat [0, 0, 1, 2, 0, 3].
|
|
0
|
|
|
0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2, 0, 3, 0, 0, 1, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
Table of n, a(n) for n=0..81.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1).
|
|
FORMULA
|
G.f.: x^2*(1 + 2*x + 3*x^3)/((1 - x)*(x + 1)*(x^2 + x + 1)*(x^2 - x + 1)). [corrected by Georg Fischer, May 15 2019]
a(n) = (1/30)*(17*(n mod 6) - 13*((n+1) mod 6) + 12*((n+2) mod 6) - 3*((n+3) mod 6) - 3*((n+4) mod 6) + 2*((n+5) mod 6)). - Paolo P. Lava, Nov 27 2006
a(n) = (3 - cos(n*Pi/3) - 2*cos(n*Pi) - sqrt(3)*sin(n*Pi/3) - 2*sqrt(3)*sin(2*n*Pi/3)) / 3. - Wesley Ivan Hurt, Apr 26 2020
|
|
MATHEMATICA
|
PadRight[{}, 100, {0, 0, 1, 2, 0, 3}] (* or *)
LinearRecurrence[{0, 0, 0, 0, 0, 1}, {0, 0, 1, 2, 0, 3}, 100] (* Georg Fischer, May 15 2019 *)
|
|
PROG
|
Floretion Algebra Multiplication Program, FAMP Code: 1em[I]sumseq[ - .25'i - .5'j - .25i' - .5j' + .25'ii' + .25'jj' - .75'kk' + .25'jk' + .25'kj' + .25e]; sumtype: (Y[15], *, sum)
(PARI) a(n)=[0, 0, 1, 2, 0, 3][n%6+1]; \\ Georg Fischer, May 15 2019
|
|
CROSSREFS
|
Sequence in context: A261727 A234579 A309332 * A085246 A268726 A035182
Adjacent sequences: A109359 A109360 A109361 * A109363 A109364 A109365
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Creighton Dement, Aug 22 2005
|
|
STATUS
|
approved
|
|
|
|