login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035223
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 41.
2
1, 2, 0, 3, 2, 0, 0, 4, 1, 4, 0, 0, 0, 0, 0, 5, 0, 2, 0, 6, 0, 0, 2, 0, 3, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 3, 2, 0, 0, 8, 1, 0, 2, 0, 2, 4, 0, 0, 1, 6, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 4, 0, 7, 0, 0, 0, 0, 0, 0, 0, 4, 2, 4, 0, 0, 0, 0, 0, 10, 1
OFFSET
1,2
LINKS
FORMULA
From Amiram Eldar, Nov 20 2023: (Start)
a(n) = Sum_{d|n} Kronecker(41, d).
Multiplicative with a(41^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(41, p) = -1 (p is in A038920), and a(p^e) = e+1 if Kronecker(41, p) = 1 (p is in A191030).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(5*sqrt(41)+32)/sqrt(41) = 1.299093061575... . (End)
MATHEMATICA
a[n_] := DivisorSum[n, KroneckerSymbol[41, #] &]; Array[a, 100] (* Amiram Eldar, Nov 20 2023 *)
PROG
(PARI) my(m = 41); direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))
(PARI) a(n) = sumdiv(n, d, kronecker(41, d)); \\ Amiram Eldar, Nov 20 2023
CROSSREFS
Sequence in context: A158449 A106533 A192421 * A035184 A257541 A120854
KEYWORD
nonn,easy,mult
STATUS
approved