login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035221
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 39.
1
1, 2, 1, 3, 2, 2, 2, 4, 1, 4, 0, 3, 1, 4, 2, 5, 0, 2, 2, 6, 2, 0, 2, 4, 3, 2, 1, 6, 0, 4, 2, 6, 0, 0, 4, 3, 0, 4, 1, 8, 2, 4, 0, 0, 2, 4, 0, 5, 3, 6, 0, 3, 0, 2, 0, 8, 2, 0, 0, 6, 2, 4, 2, 7, 2, 0, 2, 0, 2, 8, 0, 4, 0, 0, 3, 6, 0, 2, 0, 10, 1
OFFSET
1,2
LINKS
FORMULA
From Amiram Eldar, Nov 20 2023: (Start)
a(n) = Sum_{d|n} Kronecker(39, d).
Multiplicative with a(p^e) = 1 if Kronecker(39, p) = 0 (p = 3 or 13), a(p^e) = (1+(-1)^e)/2 if Kronecker(39, p) = -1 (p is in A038918), and a(p^e) = e+1 if Kronecker(39, p) = 1 (p is in A038917 \ {3, 13}).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4*log(4*sqrt(39)+25)/sqrt(39) = 2.505443727103... . (End)
MATHEMATICA
a[n_] := DivisorSum[n, KroneckerSymbol[39, #] &]; Array[a, 100] (* Amiram Eldar, Nov 20 2023 *)
PROG
(PARI) my(m = 39); direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))
(PARI) a(n) = sumdiv(n, d, kronecker(39, d)); \\ Amiram Eldar, Nov 20 2023
CROSSREFS
Sequence in context: A033559 A279027 A103151 * A035191 A297167 A325224
KEYWORD
nonn,easy,mult
STATUS
approved