login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035220
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 38.
2
1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 2, 0, 2, 0, 0, 1, 2, 1, 1, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 2, 1, 0, 2, 0, 1, 2, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 1, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 0, 2, 1, 2, 2, 0, 1, 0, 0, 2, 0, 1
OFFSET
1,11
LINKS
FORMULA
From Amiram Eldar, Nov 20 2023: (Start)
a(n) = Sum_{d|n} Kronecker(38, d).
Multiplicative with a(p^e) = 1 if Kronecker(38, p) = 0 (p = 2 or 19), a(p^e) = (1+(-1)^e)/2 if Kronecker(38, p) = -1 (p is in A038916), and a(p^e) = e+1 if Kronecker(38, p) = 1 (p is in A038915 \ {2, 19}).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = log(6*sqrt(38)+37)/sqrt(38) = 0.698181923868... . (End)
MATHEMATICA
a[n_] := DivisorSum[n, KroneckerSymbol[38, #] &]; Array[a, 100] (* Amiram Eldar, Nov 20 2023 *)
PROG
(PARI) my(m = 38); direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))
(PARI) a(n) = sumdiv(n, d, kronecker(38, d)); \\ Amiram Eldar, Nov 20 2023
CROSSREFS
Sequence in context: A091395 A248107 A352561 * A227618 A366533 A340683
KEYWORD
nonn,easy,mult
STATUS
approved