login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227618
Expansion of q * f(-q) * f(-q^4) * f(-q^16) * f(-q^6, -q^10) in powers of q where f() is a Ramanujan theta function.
1
1, -1, -1, 0, -1, 2, 0, 2, 0, 0, 1, -2, -1, -2, 2, -4, -2, 1, 3, 2, 2, 0, 0, 0, 0, 2, -4, 4, 3, -2, -8, 4, -2, 2, -2, -2, 3, -6, 0, -4, 0, 0, 5, -2, 1, 6, 8, 4, 3, -3, 2, -2, -5, 0, 0, -4, 0, -6, -3, 0, -9, 8, 2, 0, 2, 2, -5, 0, -6, 4, 0, 2, 0, 0, 3, 6, 2, -2
OFFSET
1,6
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q * f(-q) * f(-q^2) * f(-q^16)^3 / f(-q^2, -q^14) in powers of q where f() is a Ramanujan theta function.
Expansion of q * psi(-q) * psi(-q^2) * psi(-q^4) * f(-q^6, -q^10) in powers of q where psi(), f() are Ramanujan theta functions.
Euler transform of period 16 sequence [ -1, -1, -1, -2, -1, -2, -1, -2, -1, -2, -1, -2, -1, -1, -1, -4, ...].
EXAMPLE
G.f. = q - q^2 - q^3 - q^5 + 2*q^6 + 2*q^8 + q^11 - 2*q^12 - q^13 - 2*q^14 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ q QPochhammer[ q^6, q^16] QPochhammer[ q^10, q^16] QPochhammer[ q^16]^2 QPochhammer[ q] QPochhammer[ q^4], {q, 0, n}];
PROG
(PARI) {a(n) = local(A, m); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^16 + A) * sum( k=0, n\2, if( issquare( 16*k + 1, &m), (-1)^((m + 1) \ 8) * x^(2*k), 0), A), n))};
(Sage) A = CuspForms( Gamma1(16), 2, prec=80).basis(); A[0] - A[1];
(Magma) A := Basis( CuspForms( Gamma1(16), 2), 80); A[1] - A[2]; /* Michael Somos, Jan 08 2015 */
CROSSREFS
Sequence in context: A248107 A352561 A035220 * A366533 A340683 A221645
KEYWORD
sign
AUTHOR
Michael Somos, Jul 17 2013
STATUS
approved