login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227620 Logarithmic derivative of A005169, the number of fountains of n coins. 1
1, 1, 4, 5, 11, 22, 36, 69, 121, 221, 386, 686, 1210, 2122, 3734, 6517, 11408, 19903, 34714, 60485, 105312, 183272, 318758, 554262, 963361, 1674076, 2908426, 5052066, 8774386, 15237482, 26458718, 45939797, 79759442, 138468656, 240382216, 417289619, 724369536, 1257396992 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Table of n, a(n) for n=1..38.

FORMULA

L.g.f.: log( 1/(1-x/(1-x^2/(1-x^3/(1-x^4/(1-x^5/(1-...)))))) ), the logarithm of a continued fraction.

L.g.f.: log( P(x) / Q(x) ) where

P(x) = Sum_{n>=0} (-1)^n* x^(n*(n+1)) / Product(k=1..n} (1-x^k),

Q(x) = Sum_{n>=0} (-1)^n* x^(n^2) / Product(k=1..n} (1-x^k),

due to the Rogers-Ramanujan continued fraction identity.

EXAMPLE

L.g.f.: L(x) = x + x^2/2 + 4*x^3/3 + 5*x^4/4 + 11*x^5/5 + 22*x^6/6 +...

such L(x) = log(P(x)) - log(Q(x)) where

P(x) = 1 - x^2 - x^3 - x^4 - x^5 + x^8 + x^9 + 2*x^10 + 2*x^11 + 2*x^12 + 2*x^13 + 2*x^14 + x^15 + x^16 - x^18 +...+ A224898(n)*x^n +...

Q(x) = 1 - x - x^2 - x^3 + x^6 + x^7 + 2*x^8 + x^9 + 2*x^10 + x^11 + x^12 - 2*x^15 - x^16 - 3*x^17 - 3*x^18 +...+ A039924(n)*x^n +...

log(P(x)) = -2*x^2/2 - 3*x^3/3 - 6*x^4/4 - 10*x^5/5 - 11*x^6/6 - 21*x^7/7 - 22*x^8/8 - 39*x^9/9 - 42*x^10/10 +...

log(Q(x)) = -x - 3*x^2/2 - 7*x^3/3 - 11*x^4/4 - 21*x^5/5 - 33*x^6/6 - 57*x^7/7 - 91*x^8/8 - 160*x^9/9 - 263*x^10/10 +...

PROG

(PARI) /* As the log of a continued fraction: */

{a(n)=local(A=x, CF=1+x); for(k=0, n, CF=1/(1-x^(n-k+1)*CF+x*O(x^n)); A=log(CF)); n*polcoeff(A, n)}

for(n=1, 40, print1(a(n), ", "))

(PARI) /* By the Rogers-Ramanujan continued fraction identity: */

{a(n)=local(A=x, P=1+x, Q=1);

P=sum(m=0, sqrtint(n), (-1)^m*x^(m*(m+1))/prod(k=1, m, 1-x^k));

Q=sum(m=0, sqrtint(n), (-1)^m*x^(m^2)/prod(k=1, m, 1-x^k));

A=log(P/(Q+x*O(x^n))); n*polcoeff(A, n)}

for(n=1, 40, print1(a(n), ", "))

CROSSREFS

Cf. A227543, A005169, A039924, A224898.

Sequence in context: A077238 A185507 A000286 * A036539 A279710 A303956

Adjacent sequences:  A227617 A227618 A227619 * A227621 A227622 A227623

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 17 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 10:19 EST 2019. Contains 329953 sequences. (Running on oeis4.)