login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of q * f(-q) * f(-q^4) * f(-q^16) * f(-q^6, -q^10) in powers of q where f() is a Ramanujan theta function.
1

%I #13 Sep 08 2022 08:46:05

%S 1,-1,-1,0,-1,2,0,2,0,0,1,-2,-1,-2,2,-4,-2,1,3,2,2,0,0,0,0,2,-4,4,3,

%T -2,-8,4,-2,2,-2,-2,3,-6,0,-4,0,0,5,-2,1,6,8,4,3,-3,2,-2,-5,0,0,-4,0,

%U -6,-3,0,-9,8,2,0,2,2,-5,0,-6,4,0,2,0,0,3,6,2,-2

%N Expansion of q * f(-q) * f(-q^4) * f(-q^16) * f(-q^6, -q^10) in powers of q where f() is a Ramanujan theta function.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A227618/b227618.txt">Table of n, a(n) for n = 1..1000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of q * f(-q) * f(-q^2) * f(-q^16)^3 / f(-q^2, -q^14) in powers of q where f() is a Ramanujan theta function.

%F Expansion of q * psi(-q) * psi(-q^2) * psi(-q^4) * f(-q^6, -q^10) in powers of q where psi(), f() are Ramanujan theta functions.

%F Euler transform of period 16 sequence [ -1, -1, -1, -2, -1, -2, -1, -2, -1, -2, -1, -2, -1, -1, -1, -4, ...].

%e G.f. = q - q^2 - q^3 - q^5 + 2*q^6 + 2*q^8 + q^11 - 2*q^12 - q^13 - 2*q^14 + ...

%t a[ n_] := SeriesCoefficient[ q QPochhammer[ q^6, q^16] QPochhammer[ q^10, q^16] QPochhammer[ q^16]^2 QPochhammer[ q] QPochhammer[ q^4], {q, 0, n}];

%o (PARI) {a(n) = local(A, m); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^16 + A) * sum( k=0, n\2, if( issquare( 16*k + 1, &m), (-1)^((m + 1) \ 8) * x^(2*k), 0), A), n))};

%o (Sage) A = CuspForms( Gamma1(16), 2, prec=80).basis(); A[0] - A[1];

%o (Magma) A := Basis( CuspForms( Gamma1(16), 2), 80); A[1] - A[2]; /* _Michael Somos_, Jan 08 2015 */

%K sign

%O 1,6

%A _Michael Somos_, Jul 17 2013