

A191030


Primes that are quadratic residues mod 41.


3



2, 5, 23, 31, 37, 43, 59, 61, 73, 83, 103, 107, 113, 127, 131, 139, 163, 173, 197, 223, 241, 251, 269, 271, 277, 283, 307, 337, 349, 353, 359, 367, 373, 379, 389, 401, 409, 419, 431, 433, 443, 449, 461, 467, 487, 491, 523, 541, 569, 599, 607, 613, 617, 619
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Due to quadratic reciprocity, p is a square (mod 41) iff 41 is a square (mod p). The notion "quadratic residue" excludes here equality / zero, so 41 is not in this sequence but in A038919, because 41 = 41^2 (mod 41).  M. F. Hasler, Jan 17 2016


LINKS



MATHEMATICA

Select[Prime[Range[200]], JacobiSymbol[#, 41]==1&]


PROG

(Magma) [p: p in PrimesUpTo(619)  JacobiSymbol(p, 41) eq 1]; // Vincenzo Librandi, Sep 10 2012


CROSSREFS



KEYWORD

nonn,easy


AUTHOR



EXTENSIONS



STATUS

approved



