login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035159
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -31.
2
1, 2, 0, 3, 2, 0, 2, 4, 1, 4, 0, 0, 0, 4, 0, 5, 0, 2, 2, 6, 0, 0, 0, 0, 3, 0, 0, 6, 0, 0, 1, 6, 0, 0, 4, 3, 0, 4, 0, 8, 2, 0, 0, 0, 2, 0, 2, 0, 3, 6, 0, 0, 0, 0, 0, 8, 0, 0, 2, 0, 0, 2, 2, 7, 0, 0, 2, 0, 0, 8, 2, 4, 0, 0, 0, 6, 0, 0, 0, 10, 1
OFFSET
1,2
LINKS
FORMULA
From Amiram Eldar, Nov 17 2023: (Start)
a(n) = Sum_{d|n} Kronecker(-31, d).
Multiplicative with a(31^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(-31, p) = -1, and a(p^e) = e+1 if Kronecker(-31, p) = 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3*Pi/sqrt(31) = 1.69274009... . (End)
MATHEMATICA
a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[-31, #] &]];
Table[a[n], {n, 1, 100}] (* G. C. Greubel, Apr 25 2018 *)
PROG
(PARI) my(m=-31); direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))
(PARI) a(n) = sumdiv(n, d, kronecker(-31, d)); \\ Amiram Eldar, Nov 17 2023
CROSSREFS
Sequence in context: A035184 A257541 A120854 * A103489 A213944 A127479
KEYWORD
nonn,easy,mult
STATUS
approved